3.5 Implicit Differentiation

So far we have learned to differentiate equations that have been solve explicitly for y . In this section we will learn how to differentiate functions that do not have \boldsymbol{y} explicitly in terms of \boldsymbol{x}. Some functions are difficult to solve for \boldsymbol{y} in terms of \boldsymbol{x}, which, in turn, makes it difficult to find the derivative of \boldsymbol{y} with respect to x or $\frac{d y}{d x}$. To overcome this difficulty we will use the method called implicit differentiation.

Steps to Implicit Differentiation

1. Differentiate both sides of the equation with respect to \boldsymbol{x}.
2. Solve the equation for y^{\prime}, or $\frac{d y}{d x}$.

Example: If $x^{2}+y^{2}=25$, find y^{\prime}, then find the tangent line to the circle at the point $(3,4)$.
$\frac{d y}{d x}\left[x^{2}+y^{2}=25\right]$ We know that $\frac{d y}{d x} x^{2}=2 x$ but what about $\frac{d y}{d x} y^{2}$? Since we are taking the derivative of a y term with respect to \boldsymbol{x} (not y) we follow the derivative with the y^{\prime} notation. So $\ldots \frac{d y}{d x} y^{2}=2 y y^{\prime}$ (You can use $\frac{d y}{d x}$ instead of y^{\prime} if you prefer.) Similarly $\frac{d}{d x}\left(t^{2}\right)=2 t t^{\prime}$. So now back to our problem
$\frac{d y}{d x}\left[x^{2}+y^{2}\right]=\frac{d y}{d x}[25] \Rightarrow 2 x+2 y y^{\prime}=0$ Now solve for $y^{\prime} . y^{\prime}=-\frac{2 x}{2 y} \Rightarrow \boldsymbol{y}^{\prime}=-\frac{\boldsymbol{x}}{\boldsymbol{y}}$ The slope of the tangent line would be $y^{\prime}(3,4)=-\frac{3}{4}$. The equation would be $y-y_{1}=m\left(x-x_{1}\right)$ $y-4=-\frac{3}{4}(x-3) \Rightarrow y=-\frac{3}{4} x+\frac{25}{4}$ is the tangent line to the circle at the point $(3,4)$.

Example: If $y \cos (x)=x^{2}+y^{2}$, find y^{\prime}. Solutions: $\frac{d y}{d x}[y \cos (x)]=\frac{d y}{d x}\left[x^{2}+y^{2}\right]$

$$
\begin{aligned}
y\left(-\sin (x)+\cos (x) y^{\prime}\right. & =2 x+2 y y^{\prime} \\
-y \sin (x)+y^{\prime} \cos (x) & =2 x+2 y y^{\prime} \text { Solve for } y^{\prime} \\
y^{\prime} \cos (x)-2 y y^{\prime} & =2 x+y \sin (x) \\
y^{\prime}(\cos (x)-2 y) & =2 x+y \sin (x) \\
\boldsymbol{y}^{\prime} & =\frac{2 x+y \sin (\boldsymbol{x})}{(\cos (\boldsymbol{x})-2 \boldsymbol{y})}
\end{aligned}
$$

Derivatives of Inverse Trig Functions

Here we will learn how to find the derivative of the Inverse Trigonometric Functions. If \boldsymbol{f} is any one-toone differentiable function, it can be proved that tis inverse function, f^{-1}, is also differentiable.

Let's analyze the function $y=\sin ^{-1}(x)$. See the graph below. If $y=\sin ^{-1}(x)$ that also means that $x=\sin (y)$ has a range of $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

$\cos (\mathrm{y})$

Now differentiate $\mathbf{x}=\sin (\mathrm{y})$ implicitly with respect to \mathbf{x}.
$\frac{d y}{d x}(x)=\frac{d y}{d x}(\sin (y)) \Rightarrow 1=\cos (y) y^{\prime}$ (solve for y^{\prime}) $y^{\prime}=\frac{1}{\cos (y)}$ Now plot $\cos (\mathrm{y})$, remember since $y=\sin ^{-1}(x)$ has a range of $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, that means that $\cos (y)$ has a domain of $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. Notice that $\cos (y)>0$. Using the fundamental identity, $\cos ^{2}(y)+\sin ^{2}(y)=1$

$$
\begin{aligned}
& \cos ^{2}(\mathrm{y})=1-\sin ^{2}(\mathrm{y}) \\
& \cos (\mathrm{y})=\mp \sqrt{1-\sin ^{2}(y)} \text { but since } \cos (\mathrm{y})>0 \\
& \cos (\mathrm{y})=\sqrt{1-\sin ^{2}(y)} \quad \text { because } \mathrm{x}=\sin (\mathrm{y}) \text { we can substitute } \mathrm{x}^{2} \text { for } \sin ^{2}(\mathrm{y}) \\
& \cos (\mathrm{y})=\sqrt{1-x^{2}}
\end{aligned}
$$

Now since $y^{\prime}=\frac{1}{\cos (y)}$ we can write $y^{\prime}=\frac{1}{\sqrt{1-x^{2}}}$ Therefore, $\frac{d y}{d x}\left[\sin ^{-1}\right]=\frac{1}{\sqrt{1-x^{2}}}$

We can do similar methods to show the following:

Derivatives of Inverse Trigonometric Functions:

$\frac{d}{d x}\left[\sin ^{-1}(x)\right]=\frac{1}{\sqrt{1-x^{2}}} \quad \frac{d}{d x}\left[\cos ^{-1}(x)\right]=-\frac{1}{\sqrt{1-x^{2}}} \quad \frac{d}{d x}\left[\tan ^{-1}(x)\right]=\frac{1}{1+x^{2}}$
$\frac{d}{d x}\left[\csc ^{-1}(x)\right]=-\frac{1}{x \sqrt{x^{2}-1}} \quad \frac{d}{d x}\left[\sec ^{-1}(x)\right]=\frac{1}{x \sqrt{x^{2}-1}} \quad \frac{d}{d x}\left[\cot ^{-1}(x)\right]=-\frac{1}{1+x^{2}}$

Example: Find y^{\prime} if $y=x \sec ^{-1}\left(x^{3}\right)$. This uses the product rule, chain rule and inverse trig rule.

$$
y^{\prime}=x\left(\frac{1}{x^{3} \sqrt{x^{6}-1}}\right)\left(3 x^{2}\right)+\sec ^{-1}\left(x^{3}\right)=\boldsymbol{\operatorname { s e c }}^{-1}\left(\boldsymbol{x}^{3}\right)+\frac{\mathbf{3}}{\sqrt{\boldsymbol{x}^{6}-\mathbf{1}}}
$$

